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We carry out a comparative study of the problem of a walker searching several typical complex networks.
The search efficiency is evaluated for various strategies. Having no knowledge of the global properties of the
underlying networks and the optimal path between any two given nodes, it is found that the best search strategy
is the self-avoiding random walk. The preferentially self-avoiding random walk does not help in improving the
search efficiency further. In return, topological information of the underlying networks may be drawn by
comparing the results of the different search strategies.
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I. INTRODUCTION

In the past few years, much scientific interest has been
devoted to the characterization and modelling of a wide
range of complex systems that can be described as networks
[1,2]. Systems such as the Internet[3–5] or the World Wide
Web [6], social communities[7], food webs[8], and biologi-
cal interacting networks[9–11] are represented as a graph, in
which nodes represent the population individuals and links
the physical interactions among them. Among these net-
works, most have complex topological properties and dy-
namical features that cannot be accounted for by classical
graph modelling. It has been demonstrated that many of
these real-world networks pose small-world and clustering
property[12]. On the other hand, scale-free(SF) degree dis-
tributions seem to emerge frequently as dominant features
governing the topology of real-world networks[13]. These
global properties imply a large connectivity heterogeneity
and a short average distance between nodes, which have con-
siderable impact on the behavior of physical processes taking
place on top of the network. A number of models have been
developed to understand the structure and functions of un-
derlying real-world networks. For instance, scale-free net-
works have been shown to be resilient to random damage
[14–16] while also shown to be fragile under intentional at-
tacks targeting the nodes with high degree. It is also prone to
epidemic spreading(null epidemic threshold) [17–19].

While a number of recent works have concentrated on the
properties of the power-law networks and how they are dy-
namically generated, another interesting problem is to find
efficient algorithms for searching within these particular
kinds of graphs[20,21]. In the most general distributed
search context, one may have very little information about
the location of the target. An interesting example is provided
by the recent emergence of peer-to-peer networks, which
have gained enormous popularity with users wanting to share
their computer files. In such networks, the name of the target
file may be known, but due to the network’sad hocnature,
the node holding the file is not known until a real-time search
is performed. File-sharing systems that do not have a central
server includeGNUTELLA and FREENET. Files are found by
forwarding queries to one’s neighbors until the target is
found. Recent measurements ofGNUTELLA networks [22]
and simulatedFREENET networks[23] show that they have
power-law degree distributions.

Search processes would be optimal if one follows the
shortest path between two nodes under considerations.
Among all paths connecting two nodes, the shortest path is
given by the one with the smallest number of links. How-
ever, the searcher does not presumedly know the shortest
path to reach the target. The searcher even has no idea of the
general topology of the network that will be searched. It is
important to design appropriate search strategies in order to
acquire high efficiency and, in the meantime, get an overall
idea of the underlying network. Random walk becomes im-
portant in the extreme opposite case where only local con-
nectivity is known at each node. It is theoretically interesting
to probe how the structural heterogeneity affects the nature
of the diffusive and relaxation dynamics of the random walk
[20,24,25]. In return, random walk is also suggested to be a
useful tool in studying the structure of networks.

Much is known about random walks on both regular and
random networks[26,27]. Recently, there have been several
studies of random walks on small-world networks(SWN)
[28–30] as well as on the SF’s[20,21]. In this work, we
systemically carry out comparative studies of random walks
for several typical complex networks. We suppose at every
step, the walker only know neighbors of its present node. So
if the target is at one neighbor of the present node where the
walker stays, this round of search is over. The search strate-
gies adopted by the walker include the following: random
walk (RW), no-back (NB) walk, no-triangle-loop(NTL)
walk, no-quadrangle-loop(NQL) walk, and self-avoiding
(SA) random walk. For the RW, the walker may hop to a
neighbor node by randomly taking one of the links with
equal probability. It forgets all information about its past.
The NB walk implies that a random walker, if possible, will
not return to the node it was situated at the previous step.
Similarly, NTL and NQL random walks mean that the walker
will try to avoid walking in loops, with three or four edges,
respectively, unless there is no other choice. We mention that
the NQL walk also includes the NTL, which means it elimi-
nates quadrangle loops as well as triangle loops. Finally, the
SA random walk implies that the walker is the smarter. It
tries to avoid revisiting the node that it has already visited in
a run of the search. Surely, the SA walk also includes the
NTL and NQL walks.

Let the walker start from one of the nodes and set in turn
the other nodes as the target. For every pair of given nodes,
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we perform 200 runs of simulations and take average of the
search times. It is found that the search time is only slightly
dependent on the starting nodes, regardless of the large vari-
ance in node degree for some networks. The overall mean
search time is again average over the whole network. It is
found that search efficiency of each walk strategy varies
widely with the topology of the underlying networks. In gen-
eral, the self-avoiding random walk is the most efficient
search strategy.

We also perform a preferentially self-avoiding(PSA) ran-
dom walk on these networks, in which the walker is prone to
a near neighbor with a higher degree. In this case, the walker
must know the degree of its present node, as well as the
degrees of its near neighbors. Contrary to one’s intuition, it
does not promote the efficiency of the search processes. In
many cases, it lowers the efficiency and only greatly in-
creases the computer running time.

The paper is organized as follows. In Sec. II, we study the
search processes on random graph networks. Section III con-
cerns SWN’s and in Sec. IV, properties of scale-free net-
works are investigated. Summary is included in Sec. V.

II. RANDOM-GRAPH NETWORKS

We define a random graph asN labelled nodes and every
pair of the nodes being connected with probabilityp. Con-
sequently the total number of edges is a random variable
with the expected valuepNsN−1d /2. The degreeki of a node
i follows a binomial distribution with parametersN−1 andp:

Pski = kd = Ck
N−1pks1 − pdN−1−k. s1d

We perform random walks only on the largest cluster. The
walker starts in turn from a node to reach a given node on the
network. Average is taken over 200 runs. We note that the
search time is only slightly dependent on the starting nodes.
Figure 1 shows a log-log plot of average search times for
variousp, given a total number of nodesN=1000. It exhibits
a power-law relationt~p−g, with exponentg=1. In fact, we
have performed all the above mentioned search strategies,
and found the difference is rather small. It means that for the

random graph network, clustering effect and short path effect
are not obvious. As a whole, a random walk is also the op-
timal walk.

III. THE WATTS–STROGATZ MODEL

The small-world networks proposed by Watts–Strogatz
(WS) are structures of much recent interest. It combines as-
pects from regular and completely random lattices. Such
structure may be devised by adding, in a random way, links
to an ordered lattice. A major feature is that even at a very
low density of additional links, the chemical distance(mini-
mal distance between two points) drastically decreases from
its original value on the underlying regular lattice. Namely, it
exhibits the small-world characteristics. The WS model pos-
sesses inherent loops and therefore displays other properties
than the disordered treelike structure, namely, it has a large
clustering coefficient.

We start fromN sites on a ring, where each of the sites is
connected by links to its four nearest and next-nearest neigh-
bors. For all pairs of sitessi ,kd, we add a link with probabil-
ity p. As in Sec. II, we perform random walks for various
strategies on the WS network forN=300 and found great
difference against the random graph network. Figure 2 shows
that the random walk is now a bad search strategy. The no-
back walk, no-triangle-loop and no-quadrangle-loop walks,
as well as self-avoiding walk run more efficiently. The NTL
and NQL walks eliminate repeating visits in loops for clus-
tered nodes. Hence the improvement of search efficiency for
NTL and NQL walks as to the RW implies that high clusters
of nodes are popular in the underlying SWN’s. On the other
hand, the SA random walk can further largely decrease the
search time, indicating that a small-world property of the
underlying network has important effect. This can be under-
stood by noting that the SA walker may effectively travel to
remote nodes by taking the short cuts in the small-world
network and hence avoid being trapped in a small region
where it must repeatedly visit the same nodes because of no
other choice. In other words, the short-cuts help the walker
to speed up the iteration.

FIG. 1. Log-Log plot of average search time(walking steps) t
versus link probabilityp of a random graph. The total number of
nodesN=1000. The slope of the line is −1. The behavior of all the
walk strategies is similar.

FIG. 2. (Color online) Dependence of average search times on
the short-cut probabilityp on the WS model for RW, NB, NTL,
NQL, and SA walks, respectively. The total number of nodesN
=300.
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IV. SCALE-FREE NETWORKS

A large number of real networks, including metabolic net-
works, the protein interaction network, the World Wide Web,
and even some social networks, exhibit the scale-free topol-
ogy, in which the vertex has a power-law degree distribution
pskd~k−g typically with scaling exponent 2,g,3 [1,2].
With the pioneer work of Barabási and Albert(BA) [13],
dozens of scale-free models have been constructed[31–36].
The fundamental ingredients in the BA model and its vari-
ants are the network growth and the preferential attachment:
vertices are added one after another to the network, and
edges are more prone to be connected to vertices with large
k. Other models with nongrowing algorithm also exist
[37,38]. Below we will focus on two typical SF networks:
one is the original BA model; the other is a clustered SF
model. We study the effects of clustering on the dynamical
processes.

A. The Barabási–Albert model

The algorithm of the BA model is the following:
(1) Growth, starting with a small numberm0 of nodes, at

every step, we add a new node withm=2 edges that link the
new node tom different modes already present in the system.

(2) Preferential attachment, when choosing the nodes to
which the new node connects, we assume that the probability
P that a new node will be connected to nodei depends on
the degreeki of nodei, such that

Pskid =
ki

o j
kj

. s2d

The scale-free network generated in such a way has an
exponentg=3. It is well known that the BA model has small
clustering coefficientC, which decreases with the network
size, following approximately a power lawC,N−0.75.

Figure 3 is the average time for various search strategies
on the BA models of different sizeN. It is notable that all the
linear lines are almost parallel. In particular, the lines for NB,

NTL, and NQL collapse into one, implying clustering effects
are quite limited. On the other hand, the improvement of
search efficiency for the SA random walk is related to the
small-world feature of the SF network. In Fig. 3 we also plot
the search time for a preferentially self-avoiding random
walk (dashed line). For the PSA walk, we design that the
hopping probability of the walker to a near neighbor is pro-
portional to the degree of this neighbor. Hence a star node is
in a favored position. However, one can see that this walk
strategy does not work as good as the primitive self-avoiding
random walk. At first sight, this result is somehow contrary
to one’s intuition. It is also at variance with a conclusion
obtained in Ref.[20], which claims that the optimal search
strategy is the PSA walk. For this point, we argue that al-
though from star nodes a walker may conveniently get to
more nodes, these star nodes are also more frequently revis-
ited from other nodes. Hence PSA walk may double count
the advantage of star nodes. In other words, the star nodes
are too frequently visited. It becomes more difficult to reach
a target on nodes of small degree. The same conclusion ap-
plies to other networks. It should be mentioned that Ref.[20]
assumed that the walker knows not only the degree of the
nearest neighbors, but also the information of the near neigh-
bors’ neighbors. This is a more strict condition than ours. We
are not certain whether the discrepancy between us originates
from this additional assumption.

To reveal the characteristics of the large connectivity het-
erogeneity of scale-free networks, we study the mean first-
passage time(MFPT) kTjl of a given nodej with Kj near
neighbors. Suppose the walker starts at nodei at time t=0,
then the master equation for the probabilityPij to find the
walker at nodej at time t is

Pijst + 1d = o
k

Akj

Kk
Pikstd, s3d

where Akj is the adjacency matrix element withAkj=1 if
there is a link between nodej and nodek, andAkj=0 other-
wise. According to Ref.[21], one can obtain that

kTjl ~ 1/Kj . s4d

Namely, targets on nodes with larger degrees are more easily
found out than on nodes with smaller degrees. At a mean
field level, they are preferred in receiving information from
the whole network. It is notable that MFPT is independent of
the explicit topological structure of the underlying networks.
In Fig. 4 we depict numerical simulations of the MFPT ac-
cording to the degree distribution for a system of sizeN
=1000. After average over the search times for a given de-
greek (the lower panel), the fitted line shows that it is indeed
inversely proportional to the corresponding node degree.

We note that some nodes with a small number of neigh-
bors also have small MFPT(Fig. 4, upper panel). These
nodes play important roles in dynamical processes of infor-
mation propagation. It is called therandom-walk between-
ness[21], which is not necessarily the same as the shortest-
path betweenness extensively discussed in the literature.

FIG. 3. (Color online) Average search times for the BA model.
All the straight lines are parallel to each other. In particular, the
lines for NB, NTL, and NQL collapse into one. The search time of
the PSA walk(dashed line) is slightly higher than that of the SA
walk.
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B. Clustered scale-free models

One major deficit of the BA model is the lack of high
clustering coefficient, which is present in most practical net-
works. In particular, the clustering coefficient usually has a
degree-dependent power-law formCskd~k−g, with g,1 for
most cases[10,34,39–41]. Lots of models have been pro-
posed to account for this hierarchical feature[31–36]. As an
example, we will consider the growing model(the deactiva-
tion model) introduced by Klemm and Eguíluz in which
nodes are progressively deactivated with a probability in-
versely proportional to their connectivity[36]. Analytical ar-
guments and numerical simulations have led to the claim
that, under general conditions, the deactivated model allow-
ing a core ofm active nodes, generating a network with
average degreekkl=2m and degree probability distribution
Pskd=2m2k−3. The scale-free properties are associated to a
high clustering coefficient.

The model starts from a completely connected graph of
m=2 active nodes and proceeds by adding new nodes one by
one. Each time a node is added,(1) it is connected to all
active nodes in the network;(2) one of the active nodes is
selected and set inactive with probability

pdskid =
fo jPA

sa + kjd−1g−1

a + ki
; s5d

and (3) the new node is set active. The sum in Eq.(5) runs
over the set of active nodesA. a=2 is a model parameter.

Figure 5 is a plot as that in Fig. 3. In contrast to the BA
model, one finds that NTL walk and NQL walk all improve

the search efficiency. This is resulted from the large cluster-
ing phenomena of the deactivation model. As discussed in
Sec. III, the further reduction of search time for the self-
avoiding random walk reflects the small-world property of
this model.

V. SUMMARY

We have played random walks on complex architectures
from random-graph, small-world to scale-free networks. The
walker may take different walking strategies to promote
search efficiency. It is found that the self-avoiding random
walk is the most efficient search strategy if the walker is not
aware of the global structure of the underlying network. NTL
and NQL walks can be adopted to probe the clustering phe-
nomena of the networks by comparing with the results of
RW and NB walks. This comparison is intriguing because
NTL and NQL prevent the walker from lingering in a local
part of the network if the nodes are highly clustered. A SA
walker may rapidly get out of the possible trapping through
the short cuts of the underlying network to remote parts.
Hence the SA walk can be employed as a tool to probe the
small-world property by checking if it can further reduce the
average search time. In the framework of our study, where at
most the degrees of near neighbors are known, the preferen-
tially SA walk does not help to improve the search process
further. The possible reason is discussed.

In conclusion, we find that dynamical processes on net-
works are greatly dependent on the topological features of
the networks. In return, it is useful to explore the network
topology by comparing various walking strategies. The ex-
plicit relations between various random walks and the to-
pologies of complex networks deserve further studies.
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FIG. 4. (Color online) Upper panel, MFPT for the BA model for
targets with large connectivity heterogeneity. Lower panel, average
over the search times of givenk’s. A fitted linear relation is obtained
with a slope of −1.

FIG. 5. (Color online) Average search times for the deactivation
model with high clustering coefficient. The power-law relations in-
hibit in all search processes for RW, NB, NTL, NQL, and SA walks,
respectively.
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